
VBu�on: Practical A�estation of User-driven Operations in
Mobile Apps

Wenhao Li1;2, Shiyu Luo1;2, Zhichuang Sun3, Yubin Xia1;2, Long Lu3, Haibo Chen1;2,
Binyu Zang1, Haibing Guan2

1: Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2: Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

3: Northeastern University
{liwenhaosuper,luoshiyu,xiayubin,haibochen,byzang,hbguan}@sjtu.edu.cn, {z.sun,l.lu}@northeastern.edu

ABSTRACT
More and more malicious apps and mobile rootkits are found to
perform sensitive operations on behalf of legitimate users without
their awareness. Malware does so by either forging user inputs
or tricking users into making unintended requests to online ser-
vice providers. Such malware is hard to detect and generates large
revenues for cybercriminals, which is often used for committing
ad/click frauds, faking reviews/ratings, promoting people orbusi-
ness on social networks, etc.

We �nd that this class of malware is possible due to the lack
of practical and robust means for service providers to verify the
authenticity ofuser-driven operations(i.e., operations supposed to
be performed, or explicitly con�rmed, by a user, such as posting a
tweet or requesting a money transfer). We design and build the
VButton system to �ll this void. Our system introduces a class
of attestation-enabled app UI widgets (called VButton UI). Devel-
opers can easily integrate VButton UI in their apps to allow ser-
vice providers to verify that a user-driven operation triggered by
a VButton UI is indeed initiated and intended by a real user. Our
system contains an on-deviceManager, and a server-sideVeri�er.
Leveraging ARM TrustZone, our system can attest operation au-
thenticity even in the presence of a compromised OS. We have im-
plemented the VButton system on an ARM development board as
well as a commercial o�-the-shelf smartphone. The evaluation re-
sults show that the system incurs negligible overhead.

CCS CONCEPTS
ˆ Security and privacy � Mobile platform security ;

KEYWORDS
Mobile platform, TrustZone, User-driven security, Attestation

ACM Reference Format:
Wenhao Li1; 2, Shiyu Luo1; 2, Zhichuang Sun3, Yubin Xia1; 2, Long Lu3,
Haibo Chen1; 2, Binyu Zang1, Haibing Guan2 . 2018. VButton: Practical
Attestation of User-driven Operations in Mobile Apps. InProceedings of
MobiSys'18.ACM, New York, NY, USA, 13 pages. https://doi:org/10:475/
XXXX

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies arenot made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiSys'18, June 10�15, 2018, Munich, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5720-3.
https://doi:org/10:475/XXXX

1 INTRODUCTION
Mobile malware, especially those controlling the OS, e.g., rootk-
its, can issue requests, or perform actions on users' behalf with-
out users' awareness. In fact,user-impersonating malwareprovide
an e�ective means for cyber criminals to commit various kinds of
fraud, including fake ad clicks, ticket scalping, voter fraud,fake
reviews, etc [17, 19, 32].

Leveraging legitimate user identities and hiding within real user
devices, such malware and their forged requests are very di�cult
for service providers to detect. A recent article [5] reported a click-
farm in China that employs more than 10,000 smartphones to au-
tomatically forge user activities, including rating products, follow-
ing accounts and sending `likes' on websites. It was reported that
�Companies pay tens of thousands of pounds to get their products
as many likes as possible.� [5].

Motivated by the surge of user-impersonating malware, we aim
at addressing its root cause� the lack of methods for online ser-
vice providers to reliably verify the authenticity ofuser-driven op-
erationsoriginated from mobile devices. We identify two require-
ments that an �authentic user-driven operation� has to meet:

� R1. User Initiation. The operation isinitiatedby a human
(e.g., via a button touch/click), as opposed to by an auto-
matic agent, such as malware.

� R2. User Intention. The user intends to initiate the opera-
tion and understands its meaning, rather than being tricked.

In practice,R2 is hard to ensure in a technical way. A more
realistic description ofR2 could be: �The user isshowncorrect in-
formation to initiate the operation andcon�rm in an explicit way�.

Due to the lack of methods for reliably verifyingR1 and R2,
online service providers nowadays can only resort to a handful of
techniques toapproximately inferif R1 andR2 are met for a given
operation request.

CAPTCHA is the most commonly-used technique to tell bots
apart from human users. Despite its negative useability impact,
which keeps growing as new attacks emerge [39], CAPTCHA only
indicates human presence�it is not meant for directly proving user
initiation or intention, e.g., a user can still be tricked into solving
a CAPTCHA while not understanding the real operation to be per-
formed. Alternatively, two factor authentication schemes such as
one-time SMS code has become increasingly popular on mobile
devices not only for user authentication but also for seeking user
con�rmation on certain operations. However, this method is in-
e�ective against powerful user-impersonating malware which are

https://doi.org/10.475/XXXX
https://doi.org/10.475/XXXX
https://doi.org/10.475/XXXX

often rootkits and can easily read or intercept authenticationcodes
sent via SMS, email, push noti�cation, etc.

In this paper, we propose the VButton system which allows mo-
bile app developers or service providers to attest the authenticity
of a user-driven operation from an untrusted mobile device tover-
ify if the operation is indeed initiated and intended by a human
user (i.e., attestingR1 andR2).

To app developers, VButton is a class of customizable UI wid-
gets for users to initiate/perform sensitive operations that need to
be attested by a remote party. We provide helper APIs and libraries
which allow developers to use VButton in the same way as they
use regular UI widgets. We design two particular types of VBut-
ton UI, resembling aButton and aView, that respectively corre-
spond to two attestation modes:Explicit AttestationandIn-situ At-
testation. The Explicit Attestation mode is suitable for operations
whose complete semantics need a larger and separate UI area to
be displayed (e.g., aView that shows the content of an email be-
fore sending). The In-situ Attestation mode applies to semantically
simple operations whose meaning can be fully conveyed by their
trigger UI, e.g., aButton in a Twitter app that says �Follow User
X�. In both cases, the VButton UI and the operation semantics are
generated and displayed in a secure fashion without relying on the
(untrusted) app or the OS.

The underlying attestation mechanism is split into two parts
which are provided by the two components of our system: the
VButton Manager and the VButton Veri�er. First, the VButton Man-
ager is responsible for on-device system support. Running inside
the ARM TrustZone, i.e., the TCB (Trusted Computing Base), the
Manager renders the VButton UI, monitors relevant hardware events,
e.g., screen touches within VButton UI regions, and generates and
signs attestation blobs. Second, the VButton Veri�er is the compo-
nent deployed on server-side or veri�er-side. It generates VButton
UI upon request for either in-situ or explicit attestation. Such UIs
are sent as signed images back to requesting apps, and then passed
to the Manager for display. The Manager records any user action
on VButton UI and sends the event, along with semantics and con-
text data, to the Veri�er for attestation.

A successful attestation con�rms: (1) the operation is initiated
by a human user, (2) the request comes from an enrolled device,and
(3) the request matches captured user intention. As a result, both
R1 and R2 are met. VButton does not place any trust on either
the mobile operating system or applications. This is necessaryto
defend against rootkits, and reduces the TCB down to the code
running in the TrustZone.

In designing and building the VButton system, we solved three
major technical challenges: (1) de�ning generic, easy-to-use UIand
system primitives for the proposed attestation; (2) designingthe
system mechanism without trusting the OS or apps while minimiz-
ing the trusted codebase; (3) limiting or avoiding additional user
interaction.

In summary, this paper makes the following contributions:

� A method and its system-level mechanism, called VButton,
that enables a server to attest the authenticity ofuser-driven
operations.

� A design and implementation of VButton leveraging ARM
TrustZone which achieves satisfactory performance in prac-
tice, and security against powerful malware, e.g., rookits
and compromised OS.

� A set of well-de�ned and easy-to-use APIs for developing
VButton-enabled applications as well as application servers.

� A case study where VButton is applied to popular apps to
defend against real attacks.

The rest of this paper is organized as follows. Section 2 describes
the motivation and our threat model. Section 3 describes two modes
of our design: the explicit attestation mode and in-situ preview
mode. Section 4 details the implementation of VButton. Section 5
and Section 6 present the evaluation of our system on both secu-
rity and performance followed by a discussion on various issues
in Section 7. We then present analysis of related work in Section 8.
Finally, Section 9 concludes this paper.

2 MOTIVATION AND THREAT MODEL
2.1 Motivation
For online service providers, it is critical, yet currently impossi-
ble, to reliably verify if requests coming from (untrusted) mobile
devices are authentic and not the result of malware or deceived
users. Consequently, fraudulent requests often cause remarkable
damage to service providers while bringing considerable revenue
to attackers. For example, fraudsters, paid to promote given twitter
accounts, employ malware to compromise mobile devices of legit-
imate users and stealthily follow promoted accounts on behalfof
victim users. Such attacks led to increased questions like �I found
myself following users I don't recognize?�, to which Twitter re-
sponds �scan your devices for spyware/malware� [40].

There are generally two types of unauthentic requests:forged
requestsfrom bots andunintended requestsfrom misled users, as
listed in Table 1. Request-forging bots take full control of user de-
vices and issue requests without users' permission or knowledge.
When controlling user devices is impossible, attackers try tomis-
lead or trick users into performing unintended actions, e.g., paying
a wrong person, via UI hijacks or manipulation.

Facing the lack of e�ective and robust methods for verifying the
authenticity of user-driven operations, service providers in prac-
tice resort to the following techniques to mitigate unauthenticre-
quests by bots or misled users with limited success. Figure 1shows
a comparison of these methods in terms of their accuracy and user
involvement.

CAPTCHA : Asking users to solve hard-for-computer yet easy-
for-human problems, CAPTCHA aims to tell apart bots from hu-
mans. However, CAPTCHA is not reliable and often evaded. Re-
cently, Google has cracked its own CAPTCHA mechanism [22]
with 99.8% accuracy. Further, CAPTCHA is not designed to verify
user initiation or intention, but user presence.

User Authentication : After receiving sensitive operation re-
quests, e.g., changing passwords, placing orders, etc., some ser-
vice providers require users to re-authenticate themselvesvia pass-
words or multi-factor means. However, repeated authentications
or logins a�ect user experience, and, more importantly, o�er lit-
tle help with verifying users' intent or checking for the presence
of compromised or deceptive client apps. Moreover, some of these

2

Table 1: Types of malicious requests.

Attack Types Description Possible Attacks Mitigation in Pra ctice

Malware (Bot)
The attacker gets full control over the victim's de-
vice, and operates on behalf of the device owner.

Unaware payment, following unknown
twitter ID, Botnet for SPAM, etc.

PIN code, Fingerprint, CAPTCHA,
Multi-factor authentication.

Misleading Users

The attacker gets partial control of the victim's
device, e.g., can display some fake icon but can-
not fake user input, and lures the owner to do un-
intended operations.

Payment cheating, Facebook �like� hijack-
ing, Tweetbomb, Hidden UI element.

Server-side anomaly/fraud detec-
tion.

!"#$%&"'()*+*,+-."/0'()*&"'()*+*,+-."/

0,&
122-/#2%

!'()
122-/#2%

!"#$$%&

!"#$%&'()*+*,+-#"

./0*1-,*(!2+3*"+-,%+-#"

4!5647!

898/:%;*)(<65

=-">*?@?-"+
5AB

Figure 1: Comparison based on two dimensions: One is user
friendliness, and the other is accuracy (both false positiv e
and false negative).

techniques, such as SMS-based one-time-passwords (OTP), canbe
bypassed by user-impersonating malware, which have access to
users' SMS database or push noti�cation history.

Anomaly/Fraud Detection : Server-side anomaly or fraud de-
tections, especially those using machine learning [26, 28], are use-
ful for identifying fake or harmful inputs on the client side. How-
ever, the accuracy of such methods heavily depends on the model
and training data, and may vary signi�cantly across di�erent sce-
narios. Even if some anomaly is detected, in order to reduce false
positives, the server usually falls back to other traditional methods
like CAPTCHA.

Despite the mitigations discussed above, a practical, accurate
(low false positive and low false negative), and trustworthy tech-
nique is needed for online service providers to attest the authentic-
ity of user-driven operations/requests originated from untrusted
mobile devices.

2.2 Background: ARM TrustZone
TrustZone is a security extension in ARM SoCs (Systems on Chip)
�rst introduced in ARMv6 [12]. It o�ers a hardware-backed trusted
execution environment (TEE), referred to as theSecure World, for
running security-critical code. The regular software stack, includ-
ing the OS and apps, runs in a parallel and less-privileged environ-
ment called theNormal World. Figure 2 shows a typical architec-
ture of TrustZone.

!""#$%&'$()

*++,
-.$/0.

10%2.0
3)"2',
-.$/0.

*.24',!""#$%&'$()

-$4"#&5,
-0/$%0

3)"2'
-0/$%0

60'7(.89
-$489,0'%:

-$4"#&5
-.$/0.

!"#$%&'("#&) *+,-#+'("#&)

!"
#$

%
#$

&
#'

()
$*

+
)$

#

10%2.0
-$4"#&5
-.$/0. !"

"

3)"2'
-.$/0.

;'<0.
-.$/0.4

3)"2',
-0/$%0

-$4"#&5
-0/$%0=0>(.5

,)$-.-./&#*0-/0#.-1#$0+/$'*

Figure 2: Hardware and software components of TrustZone.
The memory is split into Secure World and Normal World,
as well as the I/O devices.

Strong isolation : TrustZone-enforced isolation applies to hard-
ware resources including processors, memory, and peripherals. The
allocation or assignment of the resources can be dynamically con-
�gured by the Secure World OS (or TEE OS). When a processor is
running in the Normal World, it can only access the Normal World
memory. In contrast, when running in the Secure World, a proces-
sor can access all memory. A peripheral can be assigned to either
the Secure World or the Normal World. For instance, the TEE OS
can assign the touchscreen to the Secure World while handling
PIN input, and otherwise keep it in the Normal World. Some de-
vices are always assigned to the Secure World, like �ngerprint and
iris scanners, while some devices whose drivers are too complex to
run in the Secure World are always assigned to the Normal World,
like network and storage.

Secure boot: When a phone boots, the processor �rst enters
the Secure World and loads the signed TEE image to memory if
the signature is valid and the image unmodi�ed. Once the TEE
OS is loaded with its security enforcement mechanisms initialized,
it switches the processor to the Normal World to start the boot
chain in the Normal World. As a result, the integrity of TEE OS
is guaranteed and the isolation between the two worlds is set up
before any untrusted code is loaded.

Remote veri�cation : TrustZone allows a remote party to check
whether a mobile device has deployed TEE and verify its secure

3

boot chain. This veri�cation relies on per-device private keys in-
stalled during device manufacturing. These keys are only accessi-
ble in the Secure World. Device vendors keep the corresponding
public keys. The provisioned keys can also be used for other forms
of remote attestation which can be more easily developed now that
ARM has established the Open Trust Protocol (OTrP) Alliance [15].

2.3 Threat Model
We assume that attackers could take full control over the Normal
World, including the applications and the OS, but not the Secure
World. Attackers' goal is to send requests or perform operations on
behalf of users, via either user-impersonating malware or user de-
ceptions. For example, a tainted Twitter app can automatically fol-
low many twitter accounts without a user's permission or aware-
ness. Similarly, a compromised PayPal app can stealthily request
money transfers out of the user's account or redirect a user-initiated
transfer to an unintended receiver.

We rely on the TEE as our TCB. Therefore, we do not consider
attacks that may breach TrustZone isolation, including side chan-
nel attacks. Meanwhile, we assume users are benign and willing to
use our system to prevent themselves from being impersonated or
tricked by attackers.

3 DESIGN
We present the design of the VButton system, including the developer-
facing interfaces, the TrustZone-based VButton Manager, and the
server-side VButton Veri�er. Developers can easily integrate VBut-
ton UI into their apps and in turn allow �rst- or third-party service
providers to verify the following properties with regard to asensi-
tive user-driven operation or request:

� R1. User Initiation: The operation is initiated by a human
user via an explicit action.

� R2. User Intention: The user intends to initiate the opera-
tion, rather than being tricked to do so.

3.1 Overview and Challenges
Intuition : The high-level idea behind VButton is as follows. Hav-
ing strong incentives to prevent user deception and impersonation,
online service providers and their �rst- or third-party app devel-
opers are the intended adopters of the VButton system. Such app
developers use theVButton SDKto easily integrate VButton UI
widgets, e.g.,Button and View, in their apps. Virtually identical
to normal UI objects, VButton UI widgets are used for app users
to initiate critical user-driven operations including login andpur-
chasing. Unlike normal app UI, these widgets are directly displayed
and monitored by the VButton Manager in TEE, as opposed to their
hosting apps or the underlying OS. This design ensures that attack-
ers cannot modify, obscure, or trigger any VButton UI when being
displayed. As a result, user initiations (R1) performed via VButton
UI can be reliably and accurately recorded.

In this context, verifying user intention (R2) for an operation
entails solving two problems: (1) showing the information of the
initiated operations to the user; (2) ensuring the user is aware of the

information. To solve the �rst problem without having to heuristi-
cally infer operation semantics, we let VButton UI fully and explic-
itly express operation semantics. To do so while keeping our sys-
tem operation-agnostic, the VButton Veri�er helps service providers
dynamically generate VButton UI widgets to be displayed in apps.
We solve the second problem by designing two types of VButton UI
that require user's explicit interaction, at the same time supporting
a wide range of operations. For example, a VButton UI for follow-
ing a user in a Twitter app is rendered by a remote Twitter server
upon the request of the VButton SDK in the app, which then passes
this UI to the VButton Manager for display. Now the veri�cation
of R2 becomes a simple comparison between the apperance of the
server-generated UI and the UI captured on the client device.

System Overview: At the core of the VButton system is theVBut-
ton Managerwhich runs in TEE. It securely displays all VButton
UI for apps, monitors user input events on these UI, and generates
a signed attestation after a VButton UI is triggered. On the server
side resides theVButton Veri�er. For each user-driven operation, it
generates the VButton UI on demand to be displayed in the client
app, and after the UI is triggered it veri�es the attestation blob sent
from the client app alongside the operation request. Our system
also includes theVButton SDKwhich app developers use to adopt
VButton UI widgets in their apps. The SDK hides the attestation-
related logic from developers including requesting the VButton UI
from the Veri�er, passing the UI to the Manager for display and
monitoring, and after the UI is triggered, obtaining the attestation
blob from the Manager and sending it to the Veri�er along with
the operation request.

Our system supports two attestation modes,Explicit Attestation
and In-situ Attestationwhich app developers can choose. TheEx-
plicit Attestationmode is suitable for semantically complex oper-
ations whose meanings cannot be fully expressed by a simple UI,
such as a button. In cases like transferringX amount of money
from A to B on certain date, our system uses anoperation preview
as the VButton UI, which presents the operation semantics to the
user for con�rmation. TheIn-situ Attestationmode is designed for
simple operations whose semantics can be expressed in a small UI
object, e.g., following userX. In this mode the VButton UI looks
like a standard button that blends into the rest of the app's UI. No
explicit preview or con�rmation is needed. A touch/click on the
button alone is enough for our system to capture user initiation
and true intention.

The design of VButton overcomes the following challenges:

� Untrusted apps and OS: The VButton Manager needs as-
sistance from apps, e.g., to trigger the display of preview,
and relies on the OS for certain operations like network I/O.
However, both the app and OS may be compromised, and
may send fake data to the VButton Manager. Thus, our de-
sign must be robust against possible evasions or manipula-
tions.

� Minimal and generic support in TEE : The code running
in TEE (i.e., our TCB) should be as small as possible while

4

!"#$"%& '&&"%&(&)*+

!"#$%

!"#$$%&'(%&)%&'(#*%

,*--*.)+/ 012.)&&"3

+,-#.%'/0,1%'(#*%

4

5

6

&#'#()*#+,-(#./#0

&#'#()*#
)**#1*)*/2'

&#'#()*#
-(#./#0
/3)4#

5"#,-(#./#0,1$(##',/1,
+/1-6)7#+,87,5(91*:2'#

7(+8"-9:

5

,*--*.)+/ 02.)&&"31

7(+8"-9:

,*--*.

;

,*--*.)+/ 012.)&&"3

!"#$"%&

<
=

>

?

'&&"%&(&)*+

@

A(+(/"31B)!"#$%"&%'()%"*+),-. '&&"%&"3

Figure 3: Performing the �follow� operation in a Twitter app that uses the explicit attestation mode of VButton.

maintaining generic support for all apps (as opposed to be-
ing app-speci�c or operation-speci�c). This requires VBut-
ton Manager to be small in size and independent of app se-
mantics and functionality.

� Ease of use for developers and users: VButton's impact
on app development and app usability should be minimal.
The system cannot require a large e�ort from app devel-
opers or service providers for adoption. Similarly, it should
avoid imposing burdens to app users.

3.2 Mode-1: Explicit Attestation
In the explicit attestation mode, a preview will be shown to the user
for con�rmation once a VButton is clicked. We use the �follow�
operation in a Twitter app as an example to explain the explicit
attestation mode. The process is shown in Figure 3.

Attestation Flow : As the �gure shows, when a user touches
the �follow� button (Step-1
), the app sends a request for the VBut-
ton UI to the Twitter server (Step-2
). The server then generates a
previewthat captures the semantics of the operation (Step-3
) and
sends the signed preview image to the app (Step-4
). The app for-
wards the preview to the VButton Manager, which displays it and
collects user response, either con�rming or dismissing the preview
(Step-5
). If the user con�rms it by touching the �OK� button (Step-
6
), the VButton Manager in TEE receives the touch event and then
generates an attestation that contains the hash of the preview,the
timestamp, and a nonce (Step-7
). The attestation is signed with
the per-device private key before it is sent to the Twitter server
along with the request to follow the intended user (Step-8
). The
server then veri�es the attestation using the device public key and
checks the hash value (Step-9
) to determine if the user saw the
exact preview that was generated for this operation by the server.

Since the preview is generated by the server, VButton does not
need to understand the operation semantics. In fact, regardlessof
what a to-be-attested operation is, our system goes throughthe
same steps to verify the authenticity of the operation, i.e., VButton

Table 2: The �elds of an attestation blob.

Field Description

hash The hash value of the preview image.
nonce A random number generated by the server.
tawar e Interval between displaying preview and pressing �OK�.
signature A signature of the above contents signed by TEE.

veri�es R1 andR2 in a general, operation-agnostic way. This de-
sign signi�cantly reduces the complexity of the attestation while
supporting a wide range of user-driven operations.

Leveraging the privileged TEE, the VButton Manager ensures
that the preview, when shown on the screen, cannot be obscured
or modi�ed by apps or even the OS. Similarly, only physical touch
events (as opposed to software-generated ones) that fall insidethe
preview region are captured as user responses. The VButton Man-
ager enforces these restrictions by assigning the touchscreen de-
vice to the Secure World during the period when the preview needs
to be shown. This gives the Manager exclusive permissions to draw
on the screen and receive (unforgeable) touch events for the dura-
tion of the preview.

The �elds in an attestation blob are shown in Table 2.taware
is the time interval from the moment the preview is shown to the
moment the user responds. It allows service providers to set a min-
imum time span for users to read the preview.

Multi-page Preview : In some cases a single preview is not big
enough to show the entire semantics of an operation, e.g., a rela-
tively long email to be sent. We extend the preview to support mul-
tiple pages/screens, as shown in Figure 4. In this example, when the
user is sending an email, she is presented a preview of two pages.
The Veri�er generates both pages which are displayed by the Man-
ager. The Manager captures each preview page individually and
attests user input to each page.

5

!"#"$%"!&'()$*+#,(

-!,(("&'()$*+#,(

.$/0*"1230(""10)104)(01,(,!!,50$6017"0*,889+

:7"08;305$**0*")%"0)104<=>0)(+0?*")3"0#7"#@0

,;10$60)A%)6#"+0B""09,;0)!,;6AC

:,(

!"#"$%"!&'()$*+#,(

-!,(.("&'()$*+#,(

!"##$

/$0.*"123.(""1.)1.4)(.1,(,!!,5

6)7#"*89

:.,-.;

!"#"$%"!&'()$*+#,(

-!,(("&'()$*+#,(

.$/0*"1230(""10)104)(01,(,!!,50$6017"0*,889+

:7"08;305$**0*")%"0)104<=>0)(+0?*")3"0#7"#@0

,;10$60)A%)6#"+0B""09,;0)!,;6AC

:,(

)1.4<:=.)(+.>*")3".#?"#@.,A1.$7
)B%)7#"+.C"".D,A.)!,A7BE

F,(

6)7#"*89

;.,-.;

Figure 4: Multi-page preview when sending email using
VButton.

3.3 Mode-2: In-situ Attestation
The explicit attestation mode described above is a general design
that can be used for all types of operations. However, it requires the
user to go through an additional con�rmation of a to-be-attested
operation, i.e., responding to the VButton preview, which can de-
grade user experience if happens too frequently.

We design an alternative mode, calledIn-situ Attestation, to en-
able user-transparent attestation without sacri�cing security. The
design is inspired by our observation that, for many types of opera-
tions, an explicit or separate preview is not needed for presenting
operation semantics to users and capturing their intent. In cases
like user login and twitter following, we can simply embed the
preview in the original button that users need to trigger anyways
when performing those operations, i.e., no additional preview or
con�rmation is needed.

!""#$"%"&'(

!"#$%&'()&*+(,!&''-

$*(,'&.'&

)'**'+,-.+&""#/,
)'**'+,-.+&""#/,

Figure 5: In-situ attestation mode: embedding preview
within the button.

To demonstrate the in-situ attestation, we again use the �fol-
low� operation in the Twitter app as an example (Figure 5). Touse
this mode, the app developer uses the corresponding VButton UI
in place of the regular follow button. The VButton UI is generated
by the service provider and fully conveys the operation semantics,
e.g., saying �FollowUser X�. Unlike the explicit attestation mode,
the VButton UI in this case does not cause additional user interac-
tion and does not require user awareness. When the user touches

the button, the Manager immediately captures the on-screen im-
age of the entire VButton UI. The rest of the attestation process is
similar to that of the explicit attestation mode.

Relying on untrusted apps to display VButton UI poses two chal-
lenges to our attestation. First, the visual integrity of VButton UI
cannot be guaranteed. Second, the location and orientation of the
VButton UI may change as apps update their UI which makes it
di�cult for the Manager to locate and monitor the UI. We over-
come both challenges by having the VButton SDK automatically
update the Manager about the current on-screen location of VBut-
ton UI elements. Therefore, any compromised or absent VButton
UI is captured by the Manager and detected by the Veri�er because
the captured VButton UI is not identical to the one originally gen-
erated by the Veri�er, therefore their hashes will not match.The
SDK will also enable the button only when it is fully shown to the
user, to ensure that the Manager will get the full image.

!""#$%&'$()

*)"+',
-+.+.

/00,
12$3.2

4.%+2.
*)"+',
12$3.2

4.%+2.,!''.5'.2

*)"+',
1.3$%.

62&7.8+9.2 62&7.8+9.2
:.';(2<=
1$5<=,.'%>

1$5"#&?
12$3.2

!"#$%&'("#&) *+,-#+'("#&)

!"
#$

%
#$

&
#'

()
$*

+
)$

#

@

A B
C

,)--#*

!"
"

4.%+2.
1$5"#&?
12$3.2

Figure 6: The in-situ preview mode of VButton.

Figure 6 shows the assignment of devices and data �ow of the in-
situ mode. When an application requires attestation (Step-1
), the
Attester will keep monitoring all the inputs (Step-2
 and capturing
screen (Step-3
). Once user con�rms, the Attester will generate at-
testation and send it to the application (Step-4
).

The most signi�cant di�erence between the in-situ mode and ex-
plicit attestation mode is that the VButton UI has to be displayed
by the (untrusted) hosting app, rather than the Manager in TEE.
This is because when the Manager draws on the screen, i.e., screen
is assigned to the Secure World, the app and the OS in the Nor-
mal World can no longer update the on-screen content. This iso-
lation is desirable in the explicit attestation mode where the pre-
view is shown in the foreground while the app UI remains frozen
in the background. However, this isolation, and the resulting app
UI freeze, can disturb app functionality in the in-situ attestation
mode where the app UI needs to be active.

Note that although the screen is shared between the Normal
World and the Secure World, hardware interrupts from the screen
(e.g., touch events) still go through the Manager in the TEE �rst
and cannot be forged or tampered with by untrusted code.

Special Considerations : Figure 7 shows the timeline of an in-
situ attestation. When the �Follow� button appears on the screen,
the VButton SDK immediately informs the Manager of the loca-
tion and size of the button. The Manager then starts to monitor

6

!"#$%&'
()*++#&,

! "#"$%

!""

#$%$&'(

-./0+1,()*++#&
2#30+%#&

!34#55%&' 64177,()*++#&

!+04+,+#,
8#&%+#4,%&.*+

90.+*41,
()*++#&
:80'1

!"#$

!+#.,7"#$%&'
()*++#&

!+#.,
8#&%+#4%&',%&.*+

!"#"$%

&' &(&)

Figure 7: The timeline of an in-situ attestation.

all input events (C1in the �gure), and capture images of the but-
ton at random intervals for verifying visual consistency and de-
tecting TOCTTOU attacks (C2in the �gure). When a touch event
happens within the button area, the Manager captures the button
image again (C3in the �gure), and checks if all captured images are
identical, i.e., the user sees the same button for the entiretaware
duration. Thus, if the VButton SDK lies about the location of the
button, the Manager will compute di�erences in snapshot images
and detect such an attack.

In this mode the VButton UI may move around or even tem-
porarily be rendered o� the screen, thetaware value is calculated
as the sum of the time periods when the UI is visible since its �rst
appearance. Thetaware should be larger than the threshold set by
the server.

3.4 VButton API
The VButton SDK provides a set of API for applications to use. List-
ing 1 and Listing 2 demonstrate how applications may use those
APIs to attest the user-driven operation of tapping the Twitter fol-
low button.

Explicit attestation: In Listing 1, Line 3 establishes a secure
connection with the Manager in the TEE. Line 4 renders and in-
stantiates the follow button which is a VButton. When the button
is pressed, Line 10 requests an operation preview from the remote
Veri�er. Line 12 feeds the preview image, together with the con�gu-
ration, to the Manager in the TEE. The Manager then displays the
preview over the regular app UI and monitors user input. When
the user con�rms or dismisses the preview, the Manager returns
the screen control back to the Normal World and sends the veri�-
cation result, including the attestation blob, to the appropriate app
callback (Line 14 and 19).

In-situ attestation: In Listing 2, unlike in explicit mode, the fol-
low button is the VButton UI and is composed by the remote server
upon the app's request during the initialization phase (Lines 3-4).
Line 6 informs the Manager of the button as a monitored region
, Lines 7 to 13 update the VButton location as the app UI layout
changes. Lines 14 to 31 show the in-situ attestation process trig-
gered by a user click on the button. The app does little more than
invoke the in-situ attestation API (Line 18) which takes care ofthe
visual consistency check, user input con�rmation, attestation blob
generation, etc.

Table 3 lists all the APIs exposed by the SDK that are relevant
to either attestation mode.

Listing 1: Sample API use for Explicit Attestation mode.
1 import org . VButton .*;
2 ...
3 VButton. init () ;
4 Button followBtn = (Button) f indViewById (R. id . button);
5 fol lowBtn . setOnClickListener (new View. OnClickListener () {
6 // Called when user clicks the FOLLOW button
7 @Override
8 public void onClick (View view) {
9 // Request explicit attestat ion image from server

10 Bitmap bmp = getPreviewFrame() ;
11 // Invoke VButton Manager to display and monitor

the preview UI
12 VButton. UIAttester_attest_expl ic i t (bmp,

preview_config , VButtonCallback <VerifyResult
>() {

13 @Override
14 public void onSuccess(Veri fyResult r) {
15 // Called when attestat ion is generated
16 sendFol low(" fol low" , veri fyResult) ;
17 }
18 @Override
19 public void onCancel(VButtonException e) {
20 Log. d(TAG, "User cancels fol low operation !");
21 }
22 }) ;
23 }
24 }) ;

Listing 2: Sample API use for in-situ attestation mode.
1 import org . VButton .*;
2 ...
3 VButton. init () ;
4 Button followBtn = (Button) f indViewById (R. id . button);
5 // Register the in -situ preview region
6 VButton. UIAttester_register_insitu_view (fol lowBtn ,

preview_config);
7 fol lowBtn . addOnLayoutChangeListener(new

OnLayoutChangeListener() {
8 @Override
9 public void onLayoutChange(View v, int left , int top , int

right , int bottom ,...) {
10 // Update the in -situ preview region
11 VButton. UIAttester_update_insitu_view (v,

preview_config);
12 }
13 }) ;
14 followBtn . setOnClickListener (new View. OnClickListener () {
15 @Override
16 public void onClick (View view) {
17 // Invoke VButton in -situ preview to verify
18 VButton. UIAttester_attest_insitu_preview (view ,

VButtonCallback <VerifyResult >() {
19 @Override
20 public void onSuccess(Veri fyResult r) {
21 // Called when attestat ion is generated
22 sendFol low(" fol low" , veri fyResult) ;
23 }
24 @Override
25 public void onError (VButtonException e) {
26 // Handle error
27 Log. d(TAG, " fol low_button : verify fai led !") ;
28 }
29 }) ;
30 }
31 }) ;

7

Table 3: APIs provided by VButton Manager to untrusted OS.

Command and Parameters Description

UIAttester_init() Establish a secure connection with the Manager.
UIAttester_final() Release an established connection with the Manager.
UIAttester_register_insitu_view(view_info, track_con fig) Register a new in-situ button with the Manager.view_info in-

cludes view ID, button location etc.track_config is the con�gu-
ration parameters de�ned by the server, including nonce and min-
imal tawar e .

UIAttester_update_insitu_view(view_info) Update the Manager with the new location of an in-situ button.
UIAttester_unregister_insitu_view(view_info) Ask the Manager to stop monitoring an in-situ button.
UIAttester_attest_insitu_preview(view_info) Ask the Manager to attest a registered in-situ button.
UIAttester_attest_explicit_preview(view_info, track_ config) Ask the Manager to display the explicit preview, collect user re-

sponse, and generate attestation.

4 IMPLEMENTATION
We have implemented VButton on two TrustZone-enabled devices:
a Samsung Exynos 4412 development board and a commercial o�-
the-shelf smartphone, Xiaomi RedMi2A. Both are equipped with
ARM Cortex-A9 processors. On the Samsung board, the OS in the
Normal World is Android Lollipop (5.0) with Linux kernel version
3.15. On the Xiaomi smartphone, we use Android KitKat (4.4) with
Linux kernel version 3.10. We chose two di�erent OS versions and
devices to demonstrate that VButton system design is OS- and
device-independent and can be applied to both legacy and new
OS versions. The OS running in the Secure World is a commercial
TEE compatible with GlobalPlatform TEE API speci�cation o�ered
by TrustKernel [9]. The VButton Manager runs as a trusted appli-
cation in the TEE. Generating an attestation blob is computing-
intensive. In our initial implementation using libtomcrypt [6],the
performance is quite poor. We optimize it by implementing hard-
ware �oating point support in the TEE, and replacing the critical
part of crypto with the Googleboringssl[4] library.

4.1 Key Management and Attestation Service
For every TEE-equipped device, a per-device key pair and a unique
device ID is generated and securely stored on the device during
manufacturing. The public key and the device ID are also kept in
a trusted server which can be used for various kinds of attesta-
tion. The secure on-device storage is either theefuseor the RPMB
(Replay-Protected Memory Block) partition of theeMMC. The efuse
storage is relatively expensive and very small in size. Our current
implementation uses the RPMB as the secure storage which is widely
supported by mobile device vendors.

On the server side, a signed attestation blob from a client can
be veri�ed using the corresponding device ID and public keys. To
allow third-party service providers to authenticate devices and ver-
ify attestation blobs, we implement an attestation server. It exposes
two restful attestation APIs to enrolled service providers:getNonce
andattestBlob. ThegetNonceAPI is used to create a nonce (a ran-
dom number unique to each attestation). Used with a timestamp,
the nonce prevents replay attacks. TheattestBlobis used to verify
the signature and integrity of an attestation blob received from a
mobile device. The APIs follow a customized version of the Open
Trust Protocol (OTrP) [20]. Third-party service providerscan use

this API to leverage VButton to attest the authenticity of user-
driven operations, without having to know or manage device IDs
or public keys.

User privacy could be a concern since the current implementa-
tion requires attestation server to maintain device IDs and public
keys which are trackable data. Our solution is to use adisposable
device aliasand generate ananonymous key pairin place of per-
manent device IDs and TEE public keys. Such aliases are securely
registered with the VButton Manager on devices upon secure app
installation. The secure app will send the aliases and the generated
public keys to the server through a secure channel. The aliasesare
made app-speci�c and disposed upon an app uninstallation or user
request.

4.2 Secure Display
In the explicit attestation mode, the display or screen needsto be se-
cured when a preview is active to prevent untrusted software inthe
Normal World from in�uencing what users see. The VButton Man-
ager secures the display by con�guring the TrustZone Protection
Controller and setting the Display Controller as a secure periph-
eral, i.e., assigning the screen and the corresponding framebu�er
to be exclusively managed by the TEE.

We implement a small driver in the TEE for the secure display
controller. This driver helps the Manager draw VButton previews
on the screen in a trusted fashion. For each preview display, the dri-
ver �rst freezes the content currently displayed on the screen (e.g.,
the app UIs). It then draws the preview on top of the frozen con-
tent and noti�es the Manager which then starts capturing touch
events that fall inside the areas of the preview. All the events out-
side the area of interest will be passed to the normal world. After
the user responds to the preview, the display driver recoversthe
previously frozen screen, and the Manager hands over control of
the display back to the Normal World. Note that even though the
normal world UI stops rendering during preview, the entire normal
OS and UI components are still active as usual.

In the in-situ mode, by design, the screen and the framebu�er
are managed by the Normal World OS which allows apps to up-
date their UIs as needed while the in-situ button is shown on the
screen. In this case, the secure display driver in the TEE only needs
to take snapshots of in-situ VButton UIs at random intervals which
are used by the Manager to check the visual consistency of the

8

UI. The driver is not used for drawing in this mode. Taking snap-
shots in TEE is done by directly reading the physical memory of
the framebu�er indicated by display peripheral registers.

4.3 Secure Input
In the explicit attestation mode, the touch screen peripheral is as-
signed to the TEE for the duration of a VButton preview. This is
done in a similar way to the display peripheral con�guration. Ad-
ditionally, the Inter-Integrated Circuit (I2C) peripheral connected
to the touch input is also protected and assigned to the TEE. This
is because physical touch events are received through the I2C pe-
ripheral. Directly managing the peripheral allows the Managerto
collect real user inputs while not being tricked by fake ones gener-
ated by Normal World malware. Note that there are multiple I2C
peripherals in a mobile phone, each could be connected to mul-
tiple peripherals (slaves) and each I2C could be set as secure or
non-secure device independently.

In the in-situ mode, additional input handling logic is activated
in the TEE which allows the Normal World OS to receive user in-
put events while the Manager is monitoring both the touch screen
and I2C peripheral. Without the logic, input events are consumed
by the TEE and never reach the Normal World when the periph-
erals are assigned to the TEE. We implement this logic in the se-
cure touch screen driver in the TEE. It forwards intercepted input
events to the Normal World OS by writing into the bu�er of the
Linux input subsystem.

5 SECURITY EVALUATION
In this section, we evaluate the security of VButton system. We
perform several security attacks using a set of malware to show
the e�ectiveness of VButton. To have a comprehensive evaluation,
we root our phone with a tool calledKingRoot[2], making sure
that our malware could gain full control of Android OS.

The experiments were performed on an o�-the-shelf smartphone,
Xiaomi RedMi2A, to get results in real cases. We use a computer
with Intel i7 qual-core CPU at 3.2GHz, 8GB memory and 2TB hard
disk as the server. The screen resolution of the test device is 1280X720.

5.1 Input Injection Attack
Input injection is a common technique used by user impersonation
malware to send requests on behalf of users without their aware-
ness. To simulate input injection attacks, we use themonkeyrunner
tool [7] and generate pseudo-random streams of user input events
(e.g., touches and gestures) which result in system-level UIevents.

Attack in explicit attestation mode : In the explicit attesta-
tion mode, no matter what kind of input events are injected, the
VButton Manager does not respond to injected events. This is be-
cause the Manager takes input events directly from hardware in-
stead of the Android OS.

Attack in in-situ preview mode : In in-situ attestation mode,
the victim application itself does react to the injected touch events.
However, the application gets an �attestation error� when it calls
UIAttester_attest_insitu_previewto attest user operation because
from the perspective of the Manager, the monitored display region
(i.e., the VButton UI) was never touched.

Table 4: Preview load and display time.

Display Type Latency (ms)

Display by app in a separated activity 208.0
Display by another app 2062.0
Display by VButton Manager in TEE 375.6

5.2 Display Overlay Attack
We wrote an example rootkit tool calledUIMonthat runs in the
background and monitors all application activities. Once a victim
application is launched, it immediately shows a fake screen to the
user by writing directly to the framebu�er (/dev/graphics/fb0),
tyring to trick the user to touch the area of a VButton UI that is
currently covered by a fake button.

Attack in explicit attestation mode : In explicit attestation
mode, the fake screen is not shown to the user because the Man-
ager exclusively controls the topmost layer of the screen where the
VButton preview is displayed. Only after the preview exits isthe
fake screen shown. But by that time, the user has already read and
responded to the preview.

Attacks in in-situ preview mode : In in-situ preview, the fake
screen is shown to the user, which may trick the user into clicking
the wrong button. However, the attestation fails because the server
fails to verify the image hash of the clicked area, i.e., the look of the
clicked button does not match that of the original button generated
by the Veri�er.

5.3 Implementation Complexity and TCB Size
VButton is designed to be generic and easy to deploy on existing
mobile software stacks. The VButton Manager in the TEE repre-
sents the TCB size we added which consists of a trusted application
in user mode (about 500 lines of C code), and two secure device dri-
vers in privileged mode (about 800 lines of C code). The complex-
ity of the secure drivers are far less than Normal World drivers
because VButton only reads input data from I2C peripheral and
writes simple image data directly to the framebu�er while most of
the initialization and con�guration work are done in the Normal
World drivers. For systems that have deployed trusted UI, VBut-
ton can add less code (e.g., displaying logic) to the TCB than those
without trusted UI. In our implementation, we modi�ed about 50
lines of TEE driver code in the Normal World. The VButton SDK
contains about 600 lines of Java code and 300 lines of C code.

6 PERFORMANCE EVALUATION
In this section, we evaluate the performance of VButton system.
The setup is the same as in the security evaluation. The VButton
Manager is active only when handling sensitive user-driven opera-
tions and remains dormant otherwise. For performance evaluation,
we focus on the latency overhead caused by the preview genera-
tion as well as the attestation. In practice, since the majority of the
latency is from the network, the overhead caused by VButton is
negligible.

9

Table 5: Hash calculation and preview generation cost.

Preview size
Hashing on
devices (ms)

Preview generation
on server (ms)

1*1 6 0.20
5*5 6 0.27
10*10 9 0.31
50*50 10 0.48
100*100 13 0.98
200*200 25 2.70
300*300 45 5.80
720*640 200 28.00

Table 6: Input handling latency of di�erent mode.

Input Type Duration (ms)

Original input 48.6
Preview input 27.8
In-situ input 52.2

6.1 API Performance Microbenchmarks
VButton preview loading time : The loading and display of pre-
views can introduce latency starting from the moment a preview
request is sent to the Veri�er by an application to the moment that
the preview is shown on the screen by the Manager. As a com-
parison, in addition to the latency of displaying the preview using
the TEE, we also measured the latencies of displaying the same
preview using Android in two settings: displaying in a di�erent
activity of the same application, and displaying in another applica-
tion through IPC. The evaluation result is shown in Table 4, which
indicates that the latency is relatively small.

Attestation generation time : We calculate the time to gener-
ate an attestation blob using the SHA256 hashing algorithm 2048-
bit RSA key. We average the time across 100 attestations and the
result is 56ms which is acceptable.

Preview generation and hash calculation time : In our de-
sign and implementation, the preview frame is generated on the
server side. We use a Java library calledtextimagegenerator[8]
which creates images from text and image based content to gener-
ate preview frames. Display hash calculation is done both server-
side and on device using the perceptual hash algorithm [27] which
is scaling-resistant and produces a hash value of 64 bits. We mea-
sured the time to generate hashes and previews using di�erent
VButton UI sizes, and summarize these measurements in Table 5.
The results show that the two operations add small latency espe-
cially compared with the network latency.

6.2 Input Handling Latency
We measure the input handling latency as the time di�erence be-
tween an input interrupt occuring and the input data being re-
ceived by the intended software. Table 6 shows the results.Original
input is the input latency of unmodi�ed Android.Preview inputis
the latency between a generated secure input event and the input

being consumed by the Manager.In-situ input is the latency from
a generated input event to the input being received by the Android
application. The evaluation results in Table 6 show that the input
handling overhead incurred by putting the input device driver in
the TEE is quite small. For secure preview input, the input handling
routine in the TEE is simpler and quicker than Android's and thus
incurs a shorter latency.

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600 700 800 900 1000 1100

S
er

ve
r

La
nt

en
cy

 (
m

s)

Concurrent Connected Clients

getNonce
attestBlob

Figure 8: Latency of attestation server.

6.3 Server-side Attestation Performance
We measure the server latency by simulating 100 to 1,000 concur-
rent user requests using Apache Benchmark. As introduced in Sec-
tion 4.1, the attestation server provides two restful APIs,getNonce
andattestBlob, which are called in pairs for each attestation request.
Since the signing time is longer than veri�cation time, we use a set
of pre-signed requests for server stress tests, and disable the replay
detection in the attestation server. The preview frame generation
is replaced with a prede�ned image ingetNonceAPI in this test.
The number of device public keys stored in the server is 100,000.
Figure 8 shows the attestation latency observed in a local network,
which is lower than usual cellular network latency and scales well
as the number of concurrent clients increases.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30 35 40

B
at

te
ry

 C
ap

ili
ty

 (
%

)

Time (minute)

VBbutton off
VBbutton on

VBbutton on and monitoring

Figure 9: Changing of battery capacity.

10

6.4 Power Consumption
We evaluate power consumption of the VButton system under three
con�gurations of the Manager: disabled, on-in-background, and
on-and-monitoring. We create a simple, 10-minute workload that
includes: playing a video, sur�ng the Internet, playing interactive
games, and typing messages. Figure 9 shows how much battery ca-
pacity is consumed after 4 repeated workloads (40 minutes), under
the three con�gurations. Even in the worst case when the Manager
is on and constantly monitoring UI and input events, its impact
on battery is barely noticeable. In reality, VButton is invoked on
demand instead of always on. Therefore, we expect that VButton
incurs negligible battery overhead in practice.

!"" #$%&'(()
*+,

*&-.&-
!/&01

#$%&'(()
*&-.&-

!11&21$13(0
*&-.&-

!"#$%$&'
("#$%$&'

)"#*++',+*+-%$
."#/'01',+

2"#3-,45*6
###4/'7-'8

9"#7'/-:6

;"#,'$3#5-<'=
,>*/'#/'01',+

!"#$%&'($)& (&*+&*'($)&

?"#4/'7-'8

5-<'=,>*/'

@"#3'5-7'/

Figure 10: Facebook like & share attestation timeline.

6.5 Case Study: Facebook Like & Share Button
Online social networks such as Facebook providelike buttons and
sharebuttons for users to easily endorse or share webpages and
apps among their friends. While these buttons are convenient to
use, they are subject to hijacking attacks where users unknowingly
�like� or �share� unintended content. Facebook urges users to �be
cautious to avoid infecting (their) computer(s) with malware� [1].

VButton can defeat these attacks even if a users' mobile device
is infected with malware. To demonstrate how to adopt VButton in
this case, we customize the Facebook Android SDK (only 32 lines
of changed code) and use aserver agentas the Veri�er. Figure 10
shows the interactions among the app, the server agent, the Face-
book server and the attestation server. When a user clicks a but-
ton, the Facebook SDK sends a 184-byte compressed request pack-
age to the server agent, and in return, receives a 299-byte nonce
package and a 4KB compressed preview image (300 * 257 pixels)
which contains an excerpt of the content the user wants to share.
Next, the SDK feeds the preview to the VButton Manager for dis-
play. After the user responds and the attestation is generated,the
SDK sends the attestation blob to the server agent for veri�cation,
whose post body is 231-byte long (compressed). The veri�cation
process checks the origin of the request through the attestation
server and compares the hash of the preview image. The SDK even-
tually sends the �like� request to the server agent, which validates
the request and delivers it to the Facebook server. The network

communication with Facebook server generates 12KB of TLS traf-
�c.

Note that the app that uses the customized Facebook SDK does
not need to be modi�ed. Malware may tamper with the SDK, but
doing so does not help malware bypass the attestation.

7 DISCUSSION & LIMITATION
Deployability : TEE has become prevalent in mobile devices. Mo-
bile payment providers have utilized TEE to secure online and of-
�ine payment in hundreds of millions of mobile devices, including
Alipay [11], Wechat Pay [41] and Apple Pay [14]. Since Android
Nougat, Google uses TEE as a platform security foundation in An-
droid [3] and has mandated all Android vendors to support TEE
in their systems in order to pass the Android Compatibility Test
Suite (CTS). In the meantime, more and more TEE vendors support
OTrP for dynamic trusted application deployment. The design and
implementation of VButton follows this trend by requiring slight
modi�cation to existing OS input drivers, and installing VButton
manager as an independently trusted application in TEE; thus the
deployment e�ort is small.

Downgrade attack : Usually, a server will not enforce attesta-
tions for all the operations, since a user may not use VButton, or
may operate on another device (e.g., PC) without any attestation
mechanism. Thus, an attacker could install an old version of the
apps or claim that the mobile phone does not support TrustZone,
to force the server to downgrade to original mode and thus by-
pass the attestation mechanism. We suggest application develop-
ers use device binding to avoid downgrade attacks: once VButton
has been used in a device, any downgrade should be rejected or
treated as suspicious. To make it more practical, this mechanism is
con�gurable for each operation by users according to their di�er-
ent requirements. Further, the server can also adopt securitypoli-
cies to detect anomalies, e.g., if a lot of non-attested operations are
received in a relatively short period, they may be issued from a
smartphone farm.

Fooling the user : Although we try to minimize dependence on
the end user, VButton still relies on the user to check the preview. It
is still possible that an attack may bypass the attestation. One case
is that the preview has multiple pages and the user does not check
all the pages; another is that the preview content does not match
user's intention but the user does not notice it. In the in-situ mode,
an attacker may fool the user by placing some unrelated context
near the button. In this case, we require the developers to ensure
that the in-situ button contains su�cient information. Otherwise,
it is more suitable to use the explicit attestation mode. Similarly, the
in-situ mode of VButton is not designed to defend against phish-
ing attacks intended to gain private data. For example, a malware
may fake a login page, and steal a user's password. VButton cannot
handle such cases, and could be enhanced by other complementary
mechanisms like turning on a secure LED indicator when display-
ing a secure password-input UI.

Relay attack : Relay attack is issued by secretly replacing a
VButton-enabled app with a faked one with the same UI. Then
it uses a relay device with VButton enabled to talk to the server
by employing a real operator to touch the screen for each relay

11

request. For example, the user uses a faked VButton to followAl-
ice, the faked app will send request to follow Eve, and use a relay
device to send attestation for following Eve. The key of this attack
is that the operation on a user's device is decoupled with theat-
testation generated on the relay device. This kind of attack could
be defeated by device binding: a user needs to enroll the VButton
enabled device explicitly the �rst time she uses it, so that the attes-
tation generated by a relay device will not work.

No authentication : Authentication is not considered in our de-
sign, which means if a phone is left unlocked, an attacker may do
any operation on behavior of the owner, even if VButton is de-
ployed. Such attacks can be prevented by using existing mecha-
nisms like �ngerprint, iris checkings, or face detection.

Vulnerabilities of TEE : TEE can have bugs. If an attacker ex-
ploits some bug in TEE, and further steals the private key from
the TEE, she can then generate any attestation. Currently, VBut-
ton trusts the TEE and does not consider such an attack.

8 RELATED WORK

User-driven security: There is a rich body of research on leverag-
ing user actions or intents to inform security detection or enforce-
ment systems. BINDER [18] was among the �rst to correlate user
interactions and security events for the purposes of detecting intru-
sions. NAB (Not-A-Bot) [23] is a system that defends against botnet
attacks on the server side by di�erentiating human-generated traf-
�c versus bot-generated tra�c. Jang et al. [25] proposed to block
malicious outgoing tra�c of (compromised) network applications
by permitting outgoing tra�c only when it is attributed to text-
based user input. More recently, researchers studied user-driven
access control as a means for operating systems to achieve dy-
namic and minimum granting of permissions [37, 38]. Aware [35]
is a newly proposed system that controls apps' access to sensors
on Android. Based on a trusted OS, it binds apps' sensor-access re-
quests to user input events and lets users authorize such requests.
In comparison, our work follows the same promising idea at the
high level�monitoring user interactions for detecting attacks.How-
ever, we apply this general idea to a new problem domain (i.e., re-
motely attesting client-side operations) and solve the unique tech-
nical challenges such as untrusted apps and untrusted OS, diverse
hardware speci�cations, and server-side attestation.

Remote attestation for mobile devices: Some previous works
have built special-purpose attestation tools for mobile orembed-
ded devices [13, 30, 31, 33]. Liu et al. [31] proposed software ab-
stractions for attesting data collected by mobile sensors. VeriUI [30]
focuses on protecting user login by verifying the integrity of the
login process to a remote server. C-FLAT [10] enables control-�ow
attestation on embedded devices. A common design choice among
these works, which we also follow, is using ARM TrustZone as
the client-side TCB for securely collecting or storing attestation
measurements. SchrodinText [13] is proposed to protect the out-
put process of con�dential text, including messages, veri�cation
codes, etc. It decouples the rendering and displaying of text, lever-
ages the Android OS to get layout of text without accessing the
data of the text but only the number of characters, and uses TEE
to reorder some pre-rendered glyphs to display the text. VButton

focuses on protecting the interaction between user and app, not
the con�dentiality of displayed data. AdAttester [29] is a system
for attesting the integrity of advertisement display on mobilede-
vices (i.e., checking if an ad banner has indeed being displayed as
is on a mobile device). Similar to AdAttester, VButton also uses
image-based matching as part of the attestation process. However,
our work goes beyond the �look� of a UI object, and has the ability
to understand and reconstruct the �meaning� of a UI object which
is more general and essential to verifying users' intent and percep-
tion of a to-be-initiated action.

Securing ARM platform with hardware features: Researchers
try to enhance system security with di�erent hardware features
on ARM platform like TrustZone and virtualization. Pocket hyper-
visor [16] proposes to use hypervisor for securing OS and various
services on mobile platform. YouProve [21] uses trusted hardware
to build the up-layer software stack for protecting the data of mo-
bile sensors. fTPM [36] proposes a TrustZone-based software im-
plementation of TPM-2.0 without a real TPM chip. Ditio [34] tries
to improve the security of IoT devices by recording sensor activity
logs with both TrustZone and virtualization support. vTZ [24]tar-
gets the ARM server platform and supports multiple secure worlds
for di�erent virtual machines. These works are orthogonal to our
work.

9 CONCLUSION
In this paper, we present a new system, named VButton, to en-
able a mobile service provider to reliably verify the authenticity
of user-driven operations originated from untrusted client devices.
Thanks to this new veri�cation capability, service providerscan
now only accept user requests that are initialized and intended
by real users, consequently stopping user-impersonating or user-
deceiving malware. By leveraging ARM TrustZone, a widely avail-
able secure hardware feature on mobile devices, our system is not
a�ected by powerful malware or even a compromised/rooted OS.
Our design of the VButton UI and the two attestation modes makes
our system easy-to-use for developers, lightweight for appusers,
and generic enough to support a wide range of operations.

We implemented our system in a suite of software tools for all
parties involved, including the developer SDK, the on-device mon-
itor called the Manager, and the Veri�er on the server side. We
used a development board and a commercial smartphone as our
hardware reference platforms. We evaluated the system in terms
of both security and performance. We found that the system is ro-
bust against powerful attacks, e�ective at detecting forged or un-
intended user operations, and lightweight in terms of its runtime
overhead.

ACKNOWLEDGMENTS
We thank our shepherd Jeremy Andrus and the anonymous review-
ers for their insightful comments. This work was supported by the
National Key Research and Development Program of China under
Grant No. 2016YFB1000104, the National Natural Science Founda-
tion of China under Grant Nos. 61572314 and 61525204.

12

REFERENCES
[1] �Keeping facebook activity authentic,� https://www:facebook:com/notes/

facebook-security/keeping-facebook-activity-authentic/10152309368645766/,
2014.

[2] �Kingroot,� https://kingroot.net, 2016.
[3] �Authentication | android open source project,� https://source:android:com/

security/authentication/index:html, 2017.
[4] �boringssl,� https://boringssl:googlesource:com/boringssl/, 2017.
[5] �Chinese click farm where 10k phones boost app ratings,�

http://www.dailymail.co.uk/news/article-4499730/click-farm-10-000-phones-
boost-product-ratings.html, 2017.

[6] �Libtomcrypt,� https://github:com/libtom/libtomcrypt, 2017.
[7] �monkeyrunner,� https://developer:android:com/studio/test/monkeyrunner/,

2017.
[8] �textimagegenerator library,� https://github:com/jcraane/textimagegenerator,

2017.
[9] �Trustkernel tee,� https://www:trustkernel:com, 2018.

[10] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi,
and G. Tsudik, �C-�at: control-�ow attestation for embedded systems software,�
in Proceedings of the 2016 ACM SIGSAC Conference on Computer andCommuni-
cations Security. ACM, 2016, pp. 743�754.

[11] Alipay, �Ali pay,� https://www :alipay:com/, 2017.
[12] T. Alves and D. Felton, �Trustzone: Integrated hardware and software security,�

ARM white paper, vol. 3, no. 4, 2004.
[13] A. Amiri Sani, �Schrodintext: Strong protection of sensitive textual content of

mobile applications,� inProceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2017, pp. 197�210.

[14] Apple, �Apple pay,� www:apple:com/apple-pay/, 2017.
[15] ARM, �Connected devices need e-commerce standard securitysay

cyber security experts,� https://www:arm:com/about/newsroom/
connected-devices-need-e-commerce-standard-security-say-cyber-security-experts:
php, 2016.

[16] L. P. Cox and P. M. Chen, �Pocket hypervisors: Opportunities and challenges,� in
Mobile Computing Systems and Applications, 2007. HotMobile 2007. Eighth IEEE
Workshop on. IEEE, 2007, pp. 46�50.

[17] J. Crussell, R. Stevens, and H. Chen, �Madfraud: Investigating ad fraud in android
applications,� inProceedings of the 12th annual international conference on Mobile
systems, applications, and services. ACM, 2014, pp. 123�134.

[18] W. Cui, R. H. Katz, and W.-t. Tan, �Binder: An extrusion-based break-in detector
for personal computers,� inUSENIX Annual Technical Conference, General Track,
2005, pp. 363�366.

[19] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, �A survey of mobile
malware in the wild,� in Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. ACM, 2011, pp. 3�14.

[20] O. I. I. E. T. Force, �The open trust protocol (otrp),� https://tools:ietf :org/html/
draft-pei-opentrustprotocol-01, 2017.

[21] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, andL. P. Cox, �Youprove:
authenticity and �delity in mobile sensing,� inProceedings of the 9th ACM Con-
ference on Embedded Networked Sensor Systems. ACM, 2011, pp. 176�189.

[22] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, �Multi-digit num-
ber recognition from street view imagery using deep convolutional neural net-
works,� arXiv preprint arXiv:1312.6082, 2013.

[23] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy, �Not-a-bot (nab):
Improving service availability in the face of botnet attacks,� 2009.

[24] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, �vtz: Virtualizing arm
trustzone,� in26th fUSENIXgSecurity Symposium (fUSENIXgSecurity 17), 2017,
pp. 541�556.

[25] Y. Jang, S. P. Chung, B. D. Payne, and W. Lee, �Gyrus: A framework for user-
intent monitoring of text-based networked applications.� inNDSS, 2014.

[26] M. Jiang, P. Cui, and C. Faloutsos, �Suspicious behavior detection: Current trends
and future directions,�IEEE Intelligent Systems, vol. 31, no. 1, pp. 31�39, 2016.

[27] N. Krawetz, �Perceptual hash algorithm: the average hash algorithm,�
http://www.hackerfactor.com/blog/?/archives/432-Looks-Like-It.html, 2011.

[28] K. Lee, J. Caverlee, and S. Webb, �Uncovering social spammers: social honeypots+
machine learning,� inProceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2010, pp. 435�442.

[29] W. Li, H. Li, H. Chen, and Y. Xia, �Adattester: Secure online mobile advertisement
attestation using trustzone,� inProceedings of the 13th Annual International Con-
ference on Mobile Systems, Applications, and Services. ACM, 2015, pp. 75�88.

[30] D. Liu and L. P. Cox, �Veriui: Attested login for mobile devices,� inProceedings of
the 15th Workshop on Mobile Computing Systems and Applications. ACM, 2014,
p. 7.

[31] H. Liu, S. Saroiu, A. Wolman, and H. Raj, �Software abstractions for trusted sen-
sors,� inProceedings of the 10th international conference on Mobile systems, appli-
cations, and services. ACM, 2012, pp. 365�378.

[32] W. Liu, Y. Zhang, Z. Li, and H. Duan, �What you see isn't alwayswhat you get:
A measurement study of usage fraud on android apps,� inProceedings of the 6th
Workshop on Security and Privacy in Smartphones and Mobile Devices. ACM,
2016, pp. 23�32.

[33] C. Marforio, R. J. Masti, C. Soriente, K. Kostiainen, and S. Capkun, �Hardened
setup of personalized security indicators to counter phishing attacks in mobile
banking,� in Proceedings of the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices. ACM, 2016, pp. 83�92.

[34] S. Mirzamohammadi, J. A. Chen, A. A. Sani, S. Mehrotra, and G. Tsudik, �Ditio:
Trustworthy auditing of sensor activities in mobile & iot devices,� inProceedings
of the 15th ACM Conference on Embedded Network Sensor Systems. ACM, 2017,
p. 28.

[35] G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and T. Jaeger, �Aware:
Preventing abuse of privacy-sensitive sensors via operation bindings,� in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, 2017, pp. 379�396. [Online]. Available: https://www :usenix:org/
conference/usenixsecurity17/technical-sessions/presentation/petracca

[36] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C.Fenner, K. Kinshu-
mann, J. Loeser, D. Mattoonet al., �ftpm: A software-only implementation of a
tpm chip,� 2016.

[37] T. Ringer, D. Grossman, and F. Roesner, �Audacious: User-driven access control
with unmodi�ed operating systems,� inProceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 204�
216.

[38] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan, �User-
driven access control: Rethinking permission granting in modernoperating sys-
tems,� in Security and privacy (SP), 2012 IEEE Symposium on. IEEE, 2012, pp.
224�238.

[39] S. Sivakorn, J. Polakis, and A. D. Keromytis, �I'm not a human: Breaking the
google recaptcha,�Black Hat,(i), pp. 1�12, 2016.

[40] T. Support, https://twitter:com/support/status/421400317524070402, 2016.
[41] Tecent, �Wechat pay,� https://pay:weixin:qq:com/index:php/public/wechatpay,

2017.

13

	Abstract
	1 Introduction
	2 Motivation and Threat Model
	2.1 Motivation
	2.2 Background: ARM TrustZone
	2.3 Threat Model

	3 Design
	3.1 Overview and Challenges
	3.2 Mode-1: Explicit Attestation
	3.3 Mode-2: In-situ Attestation
	3.4 VButton API

	4 Implementation
	4.1 Key Management and Attestation Service
	4.2 Secure Display
	4.3 Secure Input

	5 Security Evaluation
	5.1 Input Injection Attack
	5.2 Display Overlay Attack
	5.3 Implementation Complexity and TCB Size

	6 Performance Evaluation
	6.1 API Performance Microbenchmarks
	6.2 Input Handling Latency
	6.3 Server-side Attestation Performance
	6.4 Power Consumption
	6.5 Case Study: Facebook Like & Share Button

	7 Discussion & Limitation
	8 Related Work
	9 Conclusion

